Effects of High-Definition and Conventional tDCS on Response Inhibition.
نویسندگان
چکیده
BACKGROUND Response inhibition is a critical executive function, enabling the adaptive control of behavior in a changing environment. The inferior frontal cortex (IFC) is considered to be critical for response inhibition, leading researchers to develop transcranial direct current stimulation (tDCS) montages attempting to target the IFC and improve inhibitory performance. However, conventional tDCS montages produce diffuse current through the brain, making it difficult to establish causality between stimulation of any one given brain region and resulting behavioral changes. Recently, high-definition tDCS (HD-tDCS) methods have been developed to target brain regions with increased focality relative to conventional tDCS. OBJECTIVE Remarkably few studies have utilized HD-tDCS to improve cognitive task performance, however, and no study has directly compared the behavioral effects of HD-tDCS to conventional tDCS. METHODS In the present study, participants received either HD-tDCS or conventional tDCS to the IFC during performance of a response inhibition task (stop-signal task, SST) or a control task (choice reaction time task, CRT). A third group of participants completed the same behavioral protocols, but received tDCS to a control site (mid-occipital cortex). Post-stimulation improvement in SST performance was analyzed as a function of tDCS group and the task performed during stimulation using both conventional and Bayesian parameter estimation analyses. RESULTS Bayesian estimation of the effects of HD- and conventional tDCS to IFC relative to control site stimulation demonstrated enhanced response inhibition for both conditions. No improvements were found after control task (CRT) training in any tDCS condition. CONCLUSION Results support the use of both HD- and conventional tDCS to the IFC for improving response inhibition, providing empirical evidence that HD-tDCS can be used to facilitate performance on an executive function task.
منابع مشابه
Comparing cortical plasticity induced by conventional and high-definition 4 × 1 ring tDCS: a neurophysiological study.
BACKGROUND Transcranial direct current stimulation (tDCS) induces long-lasting NMDA receptor-dependent cortical plasticity via persistent subthreshold polarization of neuronal membranes. Conventional bipolar tDCS is applied with two large (35 cm(2)) rectangular electrodes, resulting in directional modulation of neuronal excitability. Recently a newly designed 4 × 1 high-definition (HD) tDCS pro...
متن کاملOn the Use of the Terms Anodal and Cathodal in High-Definition Transcranial Direct Current Stimulation: A Technical Note.
BACKGROUND The terms "anodal" and "cathodal" are widely used to describe transcranial direct current stimulation (tDCS) of opposing polarities, often interpreted as excitatory and inhibitory, respectively. However, high-definition tDCS allows for complex electrode configurations that may not be characterized accurately as "anodal" and "cathodal." METHOD To illustrate challenges to data interp...
متن کاملDifferential Effects of Unihemispheric Concurrent Dual-Site and Conventional tDCS on Motor Learning: A Randomized, Sham-Controlled Study
Introduction: Based on the literature, unihemispheric concurrent dual-site anodal transcranial Direct Current Stimulation (a-tDCSUHCDS) of primary Motor cortex (M1) and Dorsolateral Prefrontal Cortex (DLPFC) would be more efficient than conventional a-tDCS of M1 to induce larger and longer-lasting M1 corticospinal excitability. The main objective of the present study was to compare the effects ...
متن کاملConsidering the influence of stimulation parameters on the effect of conventional and high-definition transcranial direct current stimulation.
Recently, techniques to non-invasively modulate specific brain areas gained popularity in the form of transcranial direct current stimulation (tDCS) and high-definition transcranial direct current stimulation. These non-invasive techniques have already shown promising outcomes in various studies with healthy subjects as well as patient populations. Despite widespread dissemination of tDCS, ther...
متن کاملFeasibility of using high-definition transcranial direct current stimulation (HD-tDCS) to enhance treatment outcomes in persons with aphasia.
BACKGROUND Transcranial direct current stimulation (tDCS) enhances treatment outcomes post-stroke. Feasibility and tolerability of high-definition (HD) tDCS (a technique that increases current focality and intensity) for consecutive weekdays as an adjuvant to behavioral treatment in a clinical population has not been demonstrated. OBJECTIVE To determine HD-tDCS feasibility outcomes: 1) abilit...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Brain stimulation
دوره 9 5 شماره
صفحات -
تاریخ انتشار 2016